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ABSTRACT 
 

Present work is concerned with the solution of a one dimensional problem in generalized thermoviscoelastic 

medium with fractional order strain. The formulation is applied in the context of Green-Naghdi theory of 

thermoelasticity with energy dissipation. State space approach together with Laplace transform technique is adopted 

to obtain the general solution. Numerical inversion technique is used to derive the expressions of different field 

variables in the physical domain. Numerical results are given and illustrated graphically. 
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I. INTRODUCTION 

 

Thermoelastic wave propagation is of much 

importance in different fields such as earthquake 

engineering, nuclear reactors, aeronautics and 

astronautics etc. The coupling between thermal and 

strain fields gave rise to the coupled theory of 

thermoelasticity. The theories of generalized 

thermoelasticity were developed to amend the classical 

thermoelasticity theory. By providing sufficient basic 

modifications to the constitutive equations, Green and 

Naghdi [1-3] produced a theory which was divided into 

three different parts, referred to as G-N theory of type I, 

II and III. Type I is same as classical heat conduction 

theory (based on Fouriers law of heat conduction). 

Type II predicts the finite speed of heat propagation 

involving no energy dissipation. In type III, 

constitutive equations are derived by including thermal 

displacement gradient in addition to temperature 

gradient among constitutive variables. 

 

In the last few years, fractional calculus theory has 

been employed successfully in theories of 

thermoelasticity and several models of fractional order 

generalized thermoelasticity are established by many 

authors. Sherief et al. [4] introduced the fractional 

order theory of thermoelasticity by using the 

methodology of fractional calculus, proved uniqueness 

theorem and derived variational principle and 

reciprocity theorem. Ezzat [5] constructed a new 

mathematical model of fractional heat conduction law 

in which the generalized Fouriers law of heat 

conduction is modified by using the new Taylors series 

expansion of time fractional order developed by 

Jumarie [6]. Recently, Youssef [7] derived a new 

theory of thermoelasticity with fractional order strain 

which is considered as a new modification to Duhamel-

Neumanns stress-strain relation. In this paper, the 

author postulated a new unified system of equations 

that govern seven different models of thermoelasticity 

in the context of one-temperature and two-temperature 

and one dimensional problem for an isotropic and 

homogeneous elastic half-space. 

 

This investigation studies the one dimensional problem 

of linear, isotropic solid in thermoviscoelastic medium 

subjected to mechanical load. The application of the 

present work can not be ruled out in geophysics and 

earthquake engineering due to the importance of 

thermoviscoelastic properties. State space approach is 

employed for the general solution of the problem. The 

variations of the considered field variables with the 

distance are presented graphically. 

 

II. NOMENCLATURE 
σij  Components of stress tensor  

eij  Components of strain tensor 

ui(i = x,y,z) Components of displacement vector 

θ = T −T0 Temperature 

T  Absolute temperature 
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T0 The temperature of medium in its 

natural state assumed to be   
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,e e    Lame’s elastic constants  

0 1,    Viscoelastic relaxation times 

t  Coefficient of linear thermal 

expansion 

Ec  Specific heat at constant strain 

k   Thermal conductivity  
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2

4

E e ec
K

 
  Material characteristic of GN 

theory 

III. BASIC EQUATIONS 
 

The constitutive relation and governing equations for a 

generalized viscothermoelastic problem under the 

purview of GN III theory with fractional order strain 

are: 

* * *

12 (1 ) (1 )ij t ij t kk ij ijD e D e               (1)                  

, ,

1
( )

2
ij i j j ie u u                            (2)  

,ji j iu       (3) 

* *

, , 1 0(1 )ii ii E tK k c T D e         
                

(4) 

Here, a dot over a variable denotes derivative with 

respect to time t, a comma refers to a spatial derivative 

and the tensor convention of summing over repeated 

indices is used. 

IV. PROBLEM FORMULATION 
 

In the consideration of one dimensional problem, the 

occupied region is −∞< x <∞, whose state depends 

only on the space variable x and time t. So, the 

displacement vector u and temperature θ can be 

expressed in the following form 

ux= u(x,t), uy= 0, uz= 0, θ = θ(x,t). (5) 

The governing equations (1)-(4) in one-dimensional 

case assume the shape 

* * *

1( 2 )(1 )xx tD e           
,
             (6) 

xx

u
e e
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 ,                                   (7) 
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x








                                      (8) 

2 3
* *

1 02 2
(1 ) .E tK k c T D e

x t x

  
   

 
   

  
(9)

 

Equation (8) can be expressed as 

                                 (10) 

Proceeding with the analysis, we introduce 

dimensionless variables defined by the expressions: 

1 1 0 1 0

0 1 1
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E

e e

c
x x u u

c T T

t t
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           (11) 

where  and . 

Substituting these non dimensional values in equations 

(6), (9) and (10), we get following non dimensional 

equations (suppressing the primes):
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are the coupling parameters. 

Using the Laplace transformation defined as 

  (15) 

over the equations (12)-(14) and using the 

homogeneous initial conditions, we get the following 

equations 

0 1(1 )(1 ) (1 ) ,s s e s         
 

2 2 2 2

1(1 ) (1 )(1 ) ,s D s s s s e             

2 2 ,D s e                               (16) 

where . 

Eliminating e  from (16), we arrive at the following 

system of differential equations 
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V. STATE SPACE FORMULATION 
 

Having chosen the temperature  and stress   

component as state variables, equations (17) may be 

presented in matrix form as 

              D
2
V

¯
(x,s) = A(s)V

¯
(x,s), (19) 

where 

.(20) 

The formal solution of the differential equation (19) 

may be written as 

( , ) exp[ ( ) ] (0, ),V x s A s x V s   (21) 

where  and I is an 

identity matrix of second order. The terms containing 

exponents of growing nature in the space variable x 

have been discarded due to the regularity condition at 

infinity. 

The characteristic equation of matrix A(s) is obtained 

as 

               λ
2 
−(L1 + M2)λ + L1M2 −L2M1 = 0,          (22) 

where the roots λ1, λ2 of equation (23) must satisfy 

(22) 

1 2 1 2 ,L M                            (23) 

1 2 1 2 2 1.L M L M     .                   (24) 

The Taylor series expansion of the matrix exponential 

has the form 

. (25) 

Making use of the well-known Cayley-Hamilton 

theorem, we can express A
2 

and higher orders of the 

matrix A in terms of I and A. 

Thus the infinite series in (25) can be truncated as 
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0 1exp[ ( ) ] ( , ) ( , ) ,A s x a x s I a x s A    (26) 

wherea0 and a1 are constants depending on x and s. 

Again by Cayley-Hamilton theorem, the characteristic 

roots λ1 and λ2 of the matrix A must satisfy equation 

(26). Therefore, we have 

. (27) 

On solving the above linear system of equations, we 

obtain

 

                             (28) 

Substituting the values of a0 and a1 along with I and A 

into equation (26) , we have 

 

exp[ ( ) ] ( , ), ( , 1,2).ijA s x x s i j                      (29) 

where the components Γij(x,s) are given by 

                                                                  (30) 

. 

Hence solution (21) can be written as 

                
( , ) (0, ).ijV x s V s                                 (31) 

Plugging the values of ( , )V x s  and 

1
2

2
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s
A s I
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into (31) and after some straightforward calculation, 

the expressions for conductive temperature and stress 

are evaluated as 

2

1 0 1 0 2 0

1 2

1
( , ) [( )

x
x s L L e


   

 


   


 

                 
1

2 0 1 0 2 0( ) ],
x

L L e


   


     (32) 

2

1 0 2 0 1 0

1 2

1
( , ) [( )

x
x s M M e


   

 


   


 

                 
1

2 0 2 0 1 0( ) ].
x

M M e


   


             (33) 

VI. APPLICATION 
 

We consider a homogeneous isotropic viscoelastic 

medium occupying the region x ≥ 0 with quiescent 

initial state and boundary conditions in the following 

forms: 

1. Mechanical boundary condition 

We will suppose that the medium is subjected to a 

mechanical shock at x = 0 as follows: 

σ(0,t) = σ0 = −σ∗H(t),                       (34) 

whereσ∗is a constant. 

By applying Laplace transform defined in (15), we 

obtain 

.                                 (35) 

2. Thermal boundary condition 

The medium at x = 0 is kept at reference temperature 

T0, i.e. 

                             θ(0,t) = θ0 = 0.                             (36) 

Operating Laplace transform on the above equation, 

one can obtain 

  θ(0,s) = θ
¯

0 = 0.     (37) 

Hence, we can utilize the values of σ¯0 and θ
¯

0 from (35) 

and (37) in (32) and (33) to finally achieve the 

solutions in the Laplace transform domain as 

2 1
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1 2
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x x
L e e
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 (39) 

Using dimensionless variables and Laplace 

transform in (8), the displacement component may be 

evaluated as 

              ,                                            (40) 



International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com) 

 

 

1271 

where 1 0
1 2

1

.eT

c





  

Substitution of σ¯ from (39) into the above equation 

yields 
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VII. NUMERICAL INVERSION OF THE 

TRANSFORM 
 

The equations (38), (39) and (41) provide the 

expressions for temperature, stress and displacement in 

Laplace transform domain. To determine these in 

physical domain, Laplace inversion is applied with the 

help of numerical technique based on Fourier 

expansion of functions performed by Honig and Hirdes 

[8]. 

 

Let f
¯
(s) be the Laplace transform of function f(t). The 

inversion formula of Laplace transform states that 

 

where d is an arbitrary real number greater than all the 

real parts of singularities of f
¯
(s). Taking s = d + ιy and 

using Fourier series in the interval [0,2T], we get the 

approximate formula 

, for 0 ≤ t ≤ 2T    (42) 

where  

(43) 

and N is a sufficiently large integer representing the 

number of terms in the truncated Fourier series, chosen 

such that 

1Re ,
iN t

dt T
ik

e e f d
T





  

   
                            

(44) 

where 1  is a prescribed small positive value that 

corresponds to the degree of accuracy to be achieved. 

 

VIII. NUMERICAL RESULTS AND DISCUSSION 
 

With an aim to illustrate the contribution of fractional 

strain parameter, mechanical relaxation time and 

viscosity coefficients and heat source on field 

quantities, a numerical analysis is carried out. For this 

purpose, we have taken the following values of 

relevant parameters: 

 
 

 
Figure1: Effect of viscosity on displacement 

 

Figure2: Effect of viscosity on temperature 
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Figure3: Effect of viscosity on stress 

 

In figures 1-3, we have studied the effect of 

viscosity parameter on different fields in thermoelastic 

medium under the case with viscosity (WV) and no 

viscosity (NV). Fig. 1 is drawn to observe the effect of 

viscosity on displacement. Viscosity has decreasing 

effect on displacement in the region 0 ≤ x ≤ 1.3 while 

increasing effect after x = 1.3. Viscosity parameter 

exhibits an increasing effect on temperature and stress 

fields which is clear from Fig. 2 and 3 respectively. 

Initially, temperature is zero, which is in accordance 

with the boundary conditions. Ultimately, all the 

curves tend to zero which is physically admissible. 

 

Figure4: Effect of fractional parameter on displacement 

 

Figure5: Effect of fractional parameter on temperature 

 

Figure6: Effect of fractional parameter on stress 

 

Figures 4-6 are plotted to show the effect of fractional 

parameter β on displacement, temperature and stress 

fields respectively. Numerically, displacement increases 

for 0 ≤ x ≤ 1.5 while decreases for x >1.5 with the 

increment of values of β untill it becomes zero. It is 

noticed from Fig. 4 that the profile of temperature is 

almost same for β = 0.5 and 0.8 except the region 1.5 ≤ x 

≤ 3 and here, temperature is larger in the case of β = 0.5 

as compared to the case of β = 0.8. Numerical values of 

temperature are larger for β = 0.2 among all the 

considered values of β. Fractional parameter exhibits 

decreasing effect on stress which can be varified from 

Fig. 6. 
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IX. CONCLUSIONS 
 

According to above analysis, we can conclude the 

follwing points: 

1. All the fields are restricted in a limited region 

which is in accordance with the notion of 

generalized thermoelasticity theory. 

2. Viscosity parameter has increasing effect on the 

considered fields except displacement (here 

viscosity shows mixed effect). 

3. The effect of fractional parameter on all the 

studied fields is very much significant. 

The results presented in this paper should prove useful 

for researchers in material science and designers of 

new materials. 
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